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Abstract The electrochemical reduction of a solid
compound characterized by mixed ionic/electronic con-
ductivity, immobilized on an electrode surface and in
contact with an electrolyte solution, has been studied
theoretically. The uptake or expulsion of electrons and
electrolyte cation

Oxsolid � eÿelectrode � C�solution � RedCsolid

is coupled to maintain electroneutrality and is assumed
to obey Fick's law of di�usion. Starting with the fully
oxidized species, the simultaneous uptake of cations and
electrons will be possible at the three-phase junction
only, where electrode, solid and electrolyte solution
meet. From this point, electrons and cations di�use
perpendicularly into the crystal lattice. The reaction
zone grows owing to the formation of the electronically
and ionically conducting reduced product. Two- and
three-dimensional models have been utilized to simulate
the di�usion and the current ¯ow in response to an
applied potential step. The resulting chronoampero-
metric curves have been analyzed with the help of ®tting
procedures. Under certain conditions, a transition of the
three-phase reaction to a pure two-phase reaction oc-
curs. This transition to a two-phase condition is the
reason that a number of equations for the exhaustive

conversion are similar to those known for planar di�u-
sion, for example. To illustrate this, and for a better
understanding of the phenomena, concentration pro®les
are presented for di�erent degrees of the reaction and for
varied simulation conditions. It is demonstrated how
geometrical properties like crystal shape (cuboid with
x ¹ y ¹ z) and crystal size as well as physical properties,
e.g. the di�usion coe�cients, govern the electrochemical
behavior of mixed ionic/electronic conductors and form
the basis of the current-time functions. The numerical
simulation of a two-dimensional semi-in®nite model of
the reaction at the three-phase junction gives results
comparable to an algebraical approach. The ®nite-dif-
ference method turned out to be suitable to solve the
problems arising from the three-dimensional and ®nite
di�usion conditions and from di�erent crystal shapes.

Key words Voltammetry á Microparticles á Modelling á
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List of symbols

B crystal width (cm) á c concentration (mol cm)3) á Dx
(Dx0) length of the bulk (surface) boxes (cm) á Dy (Dy0)
width of the bulk (surface) boxes (cm) á Dz (Dz0) height
of the bulk (surface) boxes (cm) á DC+ di�usion coe�-
cient of cations inside the crystal (cm2 s)1) á Deÿ di�u-
sion coe�cient of electrons inside the crystal
(cm2 s)1) á E applied electrode potential (V) á Ef formal
potential (V) á E0 standard potential (V) á f{ } activity
coe�cient of a species within the solid phase á fshape
symmetry factor representing the in¯uence of a over-
lapping cation di�usion in the three-dimensional
model á F Faraday constant (C mol)1) á H crystal height
(cm) á L crystal length (cm) á k,m,l box indices for the x,
y and z directions á I(t) net current (A) á Is(t) surface
current (A) á Ib(t) bulk current (A) á j dimensionless in-
teger á jC+, jeÿ ¯ux of cations or ¯ux of electrons
(mol cm)2 s)1) á N amount (mol) á t time (s) á / dimen-
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sionless potential á b dimensionless di�usion coe�-
cient á m see Eq. 19 á Vm molar volume (cm3 mol)1) á
Y length of the three-phase junction.

Introduction

The voltammetry of microcrystals enables the analysis of
a wide range of compounds [2]. The technique is based
upon immobilization of trace amounts of a solid sample
on the surface of an electrode. It can provide a means to
study the electrochemical behavior of solid compounds
which is important, for example, for battery or sensor
development. One group of materials of special interest
are compounds which exhibit mixed ionic/electronic
conductivity. This means that the electrochemical redox
reaction is accompanied by an insertion and expulsion of
ions from or into the adjacent solution. In order to
maintain electroneutrality the transport of electrons and
ions has to proceed at the same rate. It has been shown
that both the transport of the ions and the electrons
obeys Fick's laws of di�usion [3]. The transport of the
electrons in the lattice (electron hopping) can be
understood in terms of an exchange reaction:

Red-Ox-Ox) Ox-Red-Ox

The consequences of such a coupled di�usion mecha-
nism on the voltammetric behavior are not straightfor-
ward and require thorough investigation. Initial
theoretical approaches describing the reaction at the
three-phase junction with the help of a two-dimensional
semi-in®nite model were carried out by Lovric and
Scholz [1]. A di�erent approach has been presented by
Oldham [4]. It is based on the di�usion through the
``bottleneck'' of the three-phase junction. Oldham could
demonstrate a sustained reaction with ion supply
through the three-phase junction to be possible within a
voltammetric time scale.

The emphasis in this paper is the simulation of a
single-crystal potential-step experiment to answer the
following questions. How does the shape and the size
in¯uence the electrochemical conversion of an immobi-
lized microcrystal? Is it possible to derive geometric pa-
rameters or the individual di�usion coe�cients from a
chronoamperometric curve? Can geometric parameters
be determined and can two-dimensional models give in-
formation comparable to a three-dimensional approach?

Theory

Consider a solid state electrochemical redox reaction,
which requires an insertion of cations to maintain elec-
troneutrality:

Oxsolid � eÿelectrode � C�solution � RedCsolid �1�
At the three-phase boundary, thermodynamic equilib-
rium is established according to:

afRedCg
afOxg

� exp�u� with u � F
RT
�Ef ÿ E� �2�

where E is the potential; Ef is the formal potential of the
reaction:

Ef � E0 � RT
F

ln
ffoxg
ffredg

ÿ RT
F

lnK � RT
F

ln aC�
solution

�3�
with

K �
afRedÿgaC�

solution

afRedCg
�

ffRedÿgcfRedÿgaC�
solution

ffRedCgcfRedCg

where E0 is the standard potential of the reaction and K
is the equilibrium constant of the cation transfer
between the crystal and the electrolyte solution.

It is assumed that the molar volume Vm (cm3 mol)1)
of the redox centers remains unchanged during the redox
process. Thus, the formal concentrations of Ox and
RedC are related to their activities as c{Ox} � a{Ox}/Vm,
c{RedC} � a{RedC}/Vm with a{RedC} + a{Ox} � 1. It is also
assumed that owing to an excess of electrolyte the cation
concentration in the solution remains una�ected by the
redox process inside the solid. Any kinetic limitations of
the reaction are ignored.

Grid properties

Assume a coordinate system (x,y,z), as in Fig. 1, in
which a crystal occupies 0 £ x < 1, )1 < y < 1,
0 £ z < 1. The (x>0,y,0) plane is the electrode|crystal
interface, (0,y,z) is the electrolyte|particle interface and
the line (0,y,0) represents the three-phase junction,
where electrolyte, electrode and crystal meet. The basic
property of the two-dimensional model is that there is no
dependence on the y-coordinate at any time during the
simulated experiment. The modelling can thereby be
reduced to the x,z-matrix demonstrated in Fig. 2. The
matrix consists of discrete boxes with the indices (k,m)
and a box area of DxkDzm (Fig. 2). To obtain a box
volume, the box area is multiplied with a normalized
length of the three-phase junction y.

In order to take the di�erent physical properties of
the crystal's surface layers (crystal|electrode and

Fig. 1 Coordinate system showing a part of the electrode surface
(x,y,0) with )1 < x,y < 1 and a part of the particle|solution
interface (x,0,z) with 0 < x,z < 1
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crystal|electrolyte interface) into consideration, we
distinguish between surface boxes (k � 0 for the crys-
tal|solution interface, m � 0 for the crystal|electrode
interface) and bulk boxes (k andm > 0).A problem is the
de®nition of the ``surface''. Does it contain a real volume
(and therefore a volume concentration c) or should one
de®ne it as a ¯at plane with a surface concentration G ?
For the following calculations it has been assumed that
the ``surface'' has a certain thickness, which is consider-
ably smaller in its magnitude than the size of the bulk
boxes.

Although ®nite di�erence methods utilizing expand-
ing grid algorithms (e.g. DuFord/Frankel) are much
faster with respect to the computing speed [5], it was
decided to work with a uniform grid because it is easier
to handle when additional conditions (®nite grid size)
are introduced. The size of the applied grid (number of
boxes) was always a compromise between poor accuracy
in the case of a small number of boxes, on the one hand,
and a dramatic decrease of computational speed with a
growing number of boxes, on the other hand. This fact is
particularly distinctive in the case of three-dimensional
grids. Depending on the simulation parameters, arrays
with a size up to 250 ´ 250 boxes were used for the two-
dimensional, semi-in®nite model and 100 ´ 100 ´ 100
boxes for the three-dimensional model.

Semi-in®nite conditions have been simulated, work-
ing with the condition that the simulation was aborted
when the product concentration inside the edge boxes
(marked with the subscript ``max'' (see Eqs. 10a±f) ex-
ceeded a value of about 10)6 mol/cm3. This concentra-
tion is an arbitrary value derived from simulated
chronoamperograms in combination with the accom-
panying concentration pro®les. In the model it repre-
sents the reaction limit where semi-in®nite di�usion
conditions are found.

The ®nite di�usion space calculations are based upon
the following considerations:

1. The values of the di�usion coe�cients, the grid size
and the time scale of the simulated experiment enable
a complete conversion to product (the abort condi-
tion of the semi-in®nite model is disabled).

2. The symmetry of the particle shape allows a smaller
simulation volume by cutting the two-dimensional
grid into two edges and the three-dimensional matrix
into four parts (Fig. 3) because the concentration on
both sides of the midplane between these parts is al-
ways equal and therefore no ¯ux occurs across that
plane.

Derivation of the di�usion equations

In the following paragraphs, the algorithm of the mod-
elling will be described in terms of the two-dimensional
grid. The three-dimensional grid has been derived
analogously, with the extension of the additional ¯ux of
cations in the y-direction.

The main assumption of the model is the condition
that the cations enter the lattice only through the (0,y,z)
interface (see Fig. 1), starting in the vicinity of the three-
phase junction. Only there is charge compensation
possible. Any cation insertion through the (x,y,zmax)
crystal|solution interface, which represents the top
boundary of a ®nite crystal, would charge the surface
layer like a condenser, compensation not being possible
since electrons can enter the crystal only from the
opposite (x,y,0) interface.

Because of the localized extent of the electric ®eld,
any migration will obey laws similar to those of

Fig. 2 Two-dimensional matrix of discrete boxes with DxDz being the
size of the bulk boxes, Dx0Dz and DxDz0 being the size of the surface
boxes and Dx0Dz0 representing the three-phase junction

Fig. 3 Coordinate system showing a part of the electrode surface
(x,y,0) with )1 < x,y < 1 and a part of the crystal|solution
interface (x,0,z) with 0 < x,z < 1 and (0,y,z) with 0 < y,z < 1.
The electrode|crystal interface occupies (x,y,0) with 0 < x,y < 1.
b Schematic drawing of a cuboid microcrystal. The calculations have
been restricted to one quarter only
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di�usion; migration has therefore been lumped in with
di�usion in our treatment.

We assume that:
1. The concentrations of the oxidized and reduced cen-

ters at the three-phase junction are thermodynami-
cally equilibrated and therefore governed by the
Nernst equation [6].

2. The ¯ux of the electrons proceeds in the z-direction
only (Fig. 2).

3. The ¯ux of the cations proceeds only in the x-direc-
tion (perpendicular to the electron ¯ow).

The total ¯ux of electrons and cations is a function of
the concentration gradients between each box (k,m) and
its two neighbor boxes (denoted by a subscript ``n''). It
follows Fick's ®rst law of di�usion:

jC� � 1

Y Dz
DN
Dt
� ÿDC�

X
2

DC
Dx
2 � Dxn

2

ÿ � �4a�

jeÿ � 1

Y Dx
DN
Dt
� ÿDeÿ

X
2

DC
Dz
2 � Dzn

2

ÿ � �4b�

where DC represents the di�erence in concentration be-
tween two adjacent boxes and DN represents the change
of the amount (moles) of cations or electrons, with
Y representing the length of the in®nite three-phase
junction.

The c symbol in the following equations represents
the concentration of the reduced species, cRedC, which is
equivalent to the concentration of cations and electrons.
Because DN � DcY DxDz with Dc � ct�Dt

�k;m� ± ct
�k;m�:

Dc
Dt
� ÿDC�

X
2

DC

Dx Dx
2 � Dxn

2

ÿ � �5�

Concentration changes of cations with time:

cnew�k;m� ÿ c�k;m�

� DC�Dt
�c�k�1;m� ÿ c�k;m��

Dx�k;m�
Dx�k;m�

2 � Dx�k�1;m�
2

� �
0@
� �c�kÿ1;m� ÿ c�k;m��

Dx�k;m�
Dx�k;m�

2 � Dx�kÿ1;m�
2

� �
1A

�6a�

Concentration changes of electrons with time:

cnew�k;m� ÿ c�k;m�

� DeÿDt
�c�k;m�1� ÿ c�k;m��

Dz�k;m�
Dz�k;m�

2 � Dz�k;m�1�
2

� �
0@
� �c�k;mÿ1� ÿ c�k;m��

Dz�k;m�
Dz�k;m�

2 � Dz�k;mÿ1�
2

� �
1A

�6b�

In order to simplify the computation, dimensionless
di�usion coe�cients (b) are introduced. Owing to the
assumptions for the surface layer there are two di�erent

coe�cients to be calculated for the electron and cation
di�usion, respectively.

We de®ne:

m � 1 b0
eÿ �

DeÿDt

Dz Dz0
2 � Dz

2

ÿ � �7a�

m > 1 beÿ �
DeÿDt
Dz2

�7b�

for the electrons. Similarly, for the cations, we use the
de®nitions:

k � 1 b0
C� �

DC�Dt

Dx Dx0
2 � Dx

2

ÿ � �7c�

k > 1 bC� �
DC�Dt
Dx2

�7d�

From Eqs. 6 and 7 it follows that:

cnew�k;m� � �1ÿ bC�kÿ1
ÿ bC�k�1

�c�k;m�
� bC�kÿ1

c�kÿ1;m� � bC�k�1
c�k�1;m� �8a�

for the cation di�usion, and:

cnew�k;m� � �1ÿ beÿmÿ1
ÿ beÿm�1

�c�k;m�
� beÿmÿ1

c�k;mÿ1� � beÿm�1
c�k;m�1� �8b�

for the di�usion of electrons.
In a more sophisticated theory it will be necessary to

take into account the Wagner factor for ions and elec-
trons [7] and to use common and direction-dependent
di�usion coe�cients DX, DY, DZ instead of the indi-
vidual di�usion coe�cients DC� and Deÿ .

Mathematical algorithm for the simulation
of a potential-step experiment

0. For t � 0, the crystal's composition is determined by
a thermodynamic equilibrium determined by the ap-
plied electrode potential Et0 :

c�k;1� � 1

Vm

1

1� exp�ÿu0�
� �

�9a�

with u0 � F �Et0ÿ Ef�=RT .
1. For t > 0, the concentration at the three-phase

junction is a function of the applied potential E:

c�0;0� � 1

Vm

1

1� exp�ÿut�
� �

�9b�

with ut � nF �E ÿ Ef�=RT .
For the simulation of a chronoamperometric experi-
ment the potentialE is held constant. In order tomodel
a potential sweep experiment, the value is shifted
according to the sweep rate and the time increment.

2. First, the di�usion of cations along the (k,y,0) plane
(the crystal|electrode interface) is calculated. The
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concentration of converted material along this inter-
face layer is determined only by the di�usion of the
cations from the three-phase junction. Electroneu-
trality is always ensured, as there is a su�ciency of
electrons along the electrode surface.

For k � 1 : cnew�1;0� � c�1;0��1ÿ b0
C� ÿ bC�� � b0

C�c�0;0�

� bC�c�2;0� �10a�
For k � 2 to kmaxÿ1: cnew�k;0� � c�k;0��1ÿ 2bC��

� bC��c�kÿ1;0� � c�k�1;0�� �10b�
For k � kmax: cnew�kmax;0� � c�kmax;0��1ÿ bC��

� bC�c�kmaxÿ1;0� �10c�

3. Based on the concentration of cations in the c(k,0)
row, the electron di�usion into the bulk is calculated:

For k � 0 to kmax and m � 1 :

cnew�k;1� � c�k;1��1ÿ b0
eÿ ÿ beÿ� � b0

eÿc�k;0� � beÿc�k;2��10d�
For k � 0 to kmax and m � 2 to mmaxÿ1:

cnew�k;m� � c�k;m��1ÿ 2beÿ� � beÿ�c�k;mÿ1� � c�k;m�1�� �10e�
For k � 0 to kmax and m � mmax

cnew�k;mmax� � c�k;mmax��1ÿ beÿ� � beÿc�k;mmaxÿ1� �10f�
4. The current is calculated from the concentration

change in each box during the time increment Dt:

I � F
X
k;1

�cnew�k;m� ÿ c�k;m��DxkDzmY
h i

=Dt �11�

5. The box concentrations are updated and time step-
ped.

For k � 0 to kmax; for m � 0 to mmax

c�k;m� � cnew�k;m�
t ) t � Dt

Return to 1:

Results and discussion

All equations in the following sections are the result of
thorough curve ®tting procedures based upon specially
designed simulation conditions. For that purpose, one
or more parameters (geometry, size, di�usion coe�-
cients) were varied and the potential step experiment was
simulated. The obtained chronoamperograms have been
analyzed using di�erent ®tting methods with the aim to
®nd dependencies of the results on the applied model
parameters. For semi-in®nite conditions the curve
analysis has been performed with the help of i

��
t
p

vs.
��
t
p

plots. Current/time data describing an exhaustive con-

version have been interpreted with exponential decay
curve ®tting procedures. Additional information could
be gained from the concentration pro®les, which have
been used to visualize the course of the reaction.

Semi-in®nite di�usion space

The accuracy of the derived equations was veri®ed with
the following procedure:

1. Using the appropriate equation, di�erent sets of
current/time values were simulated using varied
conditions (crystal size, di�usion coe�cients).

2. For the same conditions, the data were calculated
numerically from the equation.

3. The two sets of data were compared with regard to
the deviation at di�erent segments of the data set.

The following list shows the maximum deviations found
for the equations presented in the following paragraphs:

Two-dimensional model, semi-in®nite conditions:
Equations 12, 13, 14, 16, 17: <1 ´ 10)6%
Equation 23: <0.05%
Three-dimensional model, semi-in®nite conditions:
Equations 18, 25: <0.03%

Two-dimensional model

A feature of the semi-in®nite di�usion conditions is the
straight equiconcentration lines, the slope of which is a
function of the ratio of the individual di�usion coe�-
cients DC+, and De), respectively (Fig. 4). A corre-
sponding chronoamperometric plot is shown in Fig. 5.
The main feature is that the curve of the total current
approaches a steady state value. The time dependence of
the total current was found to follow Eq. 12:

I�t� � FY
Vm

1

1� exp�ÿu�
� �

� Dx0
��������
Deÿ
p � Dz0

���������
DC�
p

2
�����
pt
p

� �
�

����������������
DeÿDC�

p� �
�12�

A separation of the individual contributions of the bulk
and surface boxes with the help of a separated analysis
of the concentration changes of these boxes led to the
conclusion that both the bulk current, Ib(t), and surface
current, Is(t), are time dependent:

Is�t�� FY
Vm

1

1� exp�ÿu�
� �

Dx0
��������
Deÿ
p � Dz0

���������
DC�
p�����

pt
p

� �
�13�

Ib�t� � FY
Vm

1

1� exp�ÿu�
� �

�
����������������
DeÿDC�

p
ÿ Dx

��������
Deÿ
p � Dz

���������
DC�
p

2
�����
pt
p

� �� �
�14�

The e�ect of the increasing bulk current can be inter-
preted as a result of a growing of the reaction zone (see
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Fig. 6a). In most cases, the time dependencies can be
neglected since the surface layers (Dx0, Dz0) are assumed
to have atomic thickness. Thus the time-dependent term
becomes small compared to the steady-state term.
Equation 12 thereby can be simpli®ed to:

I�t� � FY
Vm

1

1� exp�ÿu�
� � ����������������

DeÿDC�
p

�15�

This simpli®cation cannot be applied if one of the dif-
fusion coe�cients becomes zero. Then, the reaction re-
mains surface con®ned and the steady-state term
vanishes:

Is�t� � FY Dx0
Vm

1

1� exp�ÿu�
� � ��������

Deÿ

pt

r
for DC� � 0;

�16�
or

Is�t� � FY Dz0
Vm

1

1� exp�ÿu�
� � ���������

DC�

pt

r
for Deÿ � 0;

�17�

Three-dimensional model

The results of the two-dimensional model cannot simply
be transferred to cuboid crystals, since the three-phase
junction of these objects include the edges of the rect-
angular base, with the consequence that the cations enter
the crystal from di�erent directions.

In order to model the three-dimensional di�usion
conditions the crystal|electrolyte interface plane (x,0,z)
(Fig. 3a) was introduced. This allows taking into con-
sideration the additional cation di�usion in the y-di-
rection. This three-dimensional model should more
realistically describe the di�usion processes inside a
rectangular solid.

The ®rst step was to model the semi-in®nite di�usion
conditions (0 < x,y,z < 1). The current/time curve
di�ers remarkably from the two-dimensional approach.
The chronoamperograms were found to follow Eq. 18:

I�t� � F
Vm

1

1� exp�ÿu�
� �

�
"

Y
Dx0

��������
Deÿ
p � Dz0

���������
DC�
p

2
�����
pt
p

� �
�

����������������
DeÿDC�

p� �

ÿ DC�
������������
2Deÿ t

p #
�18�

Compared to the result of the two-dimensional model
(Eq. 12), an additional subtractive term occurs. Inter-
estingly, this term was found to be independent of the
length of the three-phase junction. It has to be inter-
preted as an ``edge e�ect'' describing the overlapping of
the cation di�usion (which now proceeds in x and y
directions) near the corner and thereby its in¯uence on
the entire di�usion process.

Finite di�usion space

As was demonstrated in the above paragraphs, Eqs. 12
and 18 are the consequence of a di�usion of electrons
and cations into a semi-in®nite space. This di�usion,

Fig. 4 Isoconcentration lines for di�erent ratios of DC
+/Deÿ , derived

from two-dimensional, semi-in®nite conditions

Fig. 5 Chronoamperogram for a potential step to a value 200 mV
more negative than the formal potential: Deÿ � DC+ � 5 ´
10)8 cm2 s)1, Dx0 � Dz0 � 10)4 Dx; the currents are normalized to
the value of the di�usion coe�cients

Fig. 6 Concentration pro®le of a partially converted two-dimensional
model of a microcrystal at di�erent times after a potential step of A
3 s, B 10 s, and C 40 s; Deÿ � 5 ´ 10)9 cm2 s)1, DC+ � 10)8 cm2 s)1
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which is accompanied by the growing of the reaction
zone, is not necessarily con®ned to the condition of a
really semi-in®nite di�usion space, but can also be
expected to apply to the beginning of the conversion of a
crystal of limited size. Since crystals used for the vol-
tammetry of microparticles have a very small size (1±
100 lm) and experiments are usually performed within a
time scale where total conversion of the material may
take place, an unhindered di�usion can be assumed only
for the initial period of the reaction. Now, the most
important question will be: how do the di�usion barriers
given with the crystal size and shape determine the
advance of the electrochemical conversion through the
crystal?

The large number of crystalline inorganic and organic
compounds goes along with a great variety of crystal
shapes, based upon di�erent crystal structures and
morphologies. It is obvious that even the restriction to
rectangular crystals gives an in®nite number of shapes
based upon di�erent ratios of crystal length, height and
breadth. Additionally, one should keep in mind that a
rectangular crystal with a certain geometry can be at-
tached to an electrode surface by any of its three dif-
ferent faces. The combination of di�erent crystal
geometries and orientations with the individual di�usion
coe�cients of the cations (DC

+) and electrons (Deÿ)
produces a wealth of quite special conditions. It is not
the aim of this paper to describe all these special con-
ditions. It will be the aim to demonstrate how geometric
and physical properties may govern the electrochemical
conversion of a single rectangular microcrystal attached
to an electrode surface.

In the following paragraphs the exhaustive electro-
chemical conversion of a microcrystal will be explained
by help of two- and three-dimensional models (Fig. 3b).
For the reason of clarity, most cases are described only
by means of the dominant and most signi®cant segments
of the chronoampermometric curves.

The exhaustive conversion of the attached micro-
crystal will be described with the help of exponential
functions of the general type I � A exp�ÿBt�. All
functions are derived from the numerically simulated I
vs. t data sets. The maximum deviation of the derived
equations in relation to the simulated data was 0.5%
for the pre-exponential factor (A) and 2% for the
exponent, B.

Two-dimensional model ± Finite di�usion space

During the modelled conversion the iso-concentration
curves, which are straight lines at the beginning of the
reaction, not only change their shape but also change
their spreading direction (compare Fig. 6a±c). This
process re¯ects the extent of the reaction and the ratio of
individual di�usion coe�cients as well as the geometry
of the crystal. In order to take this point into consider-
ation, the current-time functions will be described for
di�erent conditions.

To interpret the behavior at di�erent time scales the
terms ``short time'' and ``long time'' are used, which
indicate the extent of the reaction. They are meant to be
relative terms, depending on parameters like di�usion
coe�cients and grid size. The ``short time'' term indi-
cates that only a little conversion has taken place,
whereas ``long time'' corresponds to the majority of the
material having been converted.

The short time behavior can be described with the
results obtained for the semi-in®nite condition (Eq. 12)
and its simpli®ed form (Eq. 15). The chronoampero-
grams are characterized by a time-independent steady-
state current.

To describe the long time behavior, there are three
conditions to be discussed. They depend on the ratio of
the di�usion coe�cients Deÿ and DC

+ in relation to the
dimensions of the grid:

mC� � 4DC�

L2
and meÿ � Deÿ

H2
�19�

where the factor 4 comes from the symmetry of the
model, which has the consequence that only L/2 has to
be taken into the calculation. The m-values give a mea-
sure for how fast an electron or cation can pass a certain
distance (given the particle dimensions).

mC� � meÿ . The most characteristic segment is the very
end of the conversion (where 99±99.999% of the com-
pound is already reduced). This segment has been ana-
lyzed with the help of exponential ®tting methods and
the following dependence was found:

I�t� � 8FYDeÿDC� t
VmHL

1

1� exp�ÿu�
� �

exp
ÿp2m�t

4

� �
�20�

where m� � Deÿ
H2 � 4DC�

L2 :

mC� > meÿ . Owing to a relatively fast cation di�usion,
the reaction zone spreads along the crystal|electrode in-
terface much faster than in the z-direction (for illustra-
tion, see Fig. 4, equiconcentration line B). It reaches the
midplane of the crystal (L/2,z), where both di�usion
routes, (1) coming from x � 0 and (2) coming from
x � L, meet. Both reaction zones fuse, as seen in Fig. 6,
leading to a bowl-shaped ``®lling up'' of the reduced
species parallel to the electrode surface. The exhaustive
reaction along the x-direction has the consequence that
this di�usion vector will be lost and instead the di�usion
in the z-direction determines the further conversion.
Depending on the ratio mC� > meÿ , the overall current-
time function will be dominated by this process. Thus,
the ratio mC� > meÿ with a magnitude greater than 103

was found to cause a nearly pure planar di�usion process
typical for single-working-electrode thin layer cells [8]

I�t�� 2FYLDeÿ

VmH
1

1�exp�ÿu�
� �X1

j�1
exp

ÿ�2jÿ1�2p2Deÿ t
4H2

" #
�21�
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Strictly speaking, Eq. 21 is of course a limiting case, which
is based upon cations being freelymobile in the bulk of the
crystal. In this case, the conversion depends only on the
di�usion of electrons from the electrode into the bulk.

The smaller the ratio mC� > meÿ becomes, the more
stress must be laid on the cation di�usion and the more
the graph of Eq. 21 di�ers from the chronoamperogram
obtained with help of the numerical simulation. Inter-
estingly, this divergence applies only to the initial time
of the conversion, at which Eq. 12 is valid. With the
advancing reaction, the graph of Eq. 21 approaches
the simulated curve (see Fig. 7). The smaller the
ratio mC� > meÿ becomes, the later both curves approach.

mC� < meÿ . The opposite situation occurs with a ratio
mC� /meÿ smaller than 10)3. The reaction progress is
governed by the slower cation di�usion in the x-direc-
tion. The simulated chronoamperometric plots are
dominated by a di�usion process typical of a twin-
electrode thin layer cell [8]:

I�t� � FYHDeÿ

VmL
1

1� exp�ÿu�
� �X1

j�1
exp

ÿ�2jÿ 1�2p2Deÿ t
L2

" #
�22�

The larger meÿ becomes, compared to mC� , the more the
electron di�usion along the top face of the crystal has to
be taken into consideration. Finally, the three-phase
junction reaction can be replaced by a two-phase reac-
tion (solid/electrolyte). Figure 8 clari®es this situation:
the electrons ``creep `` along the crystal/electrolyte sur-
face layer, which is converted immediately. The cation
di�usion into the crystal is rate determining. Equation
23 describes the initial period of the reaction of an
electronically conductive solid compound. Here, the
electrode potential applies to the whole surface of the
crystal and the bulk reaction is a function of the cation
di�usion only:

I�t� � FY
Vm

1

1� exp�ÿu�
� � �2H � L� ���������DC�

p�����
pt
p ÿ 2:5DC�

� �
�23�

The further course of the reaction is determined by the
shape (ratio of length, height and breadth) of the crystal:
the reaction is dominated by di�usion through the larger
crystal|solution interface (top face or side face). Thus,
typical single-working-electrode thin ®lm behavior can
be observed for H � L (¯at crystals). Here, the simu-
lated chronoamperometric curves follow Eq. 24:

I�t� � 2FADeÿ

VmH
1

1� exp�ÿu�
� �

exp
ÿp2Deÿ t
4H2

� �
�24�

Equation 24 includes only the ®rst term of an expo-
nential series and describes the very end of the conver-
sion (>99.5%) only.

For a reaction which is based upon the assumed
independent (but coupled!) di�usion of electrons and
cations, the following conclusions can be made: even
though the initial conversion steps are con®ned to the
three-phase junction, i.e. the electrode|electrolyte|crystal
boundary, the reaction transforms into a typical two-
phase reaction based upon the slowest di�usion process,
either the cation di�usion through the crystal|solution
interface or the electron di�usion through the crys-
tal|electrode interface.

Three-dimensional model; ®nite di�usion space

For a certain geometry (may be a cube or a cuboid) of
the microcrystal, the ratio Deÿ/DC� determines the spa-
tial course of the reaction zone and thereby the resulting
current/time function. Figure 9 shows the isoconcen-
tration lines along the (x,y) plane at half height for two
di�erently shaped cuboids after a partial reduction of
the particle. Here, the problem of deriving a ``general
equation'' for the current/time function becomes obvi-
ous. The progress of the reaction zone follows di�erent

Fig. 7 Comparison of a simulated potential-step experiment and the
derived current/time dependence (Eq. 21); two-dimensional model
with L � 25 lm, H � 25 lm, y � 1 cm, DC� � 10)8 cm2 s)1,
De

) � 10)9 cm2 s)1, Vm � 153.8 cm3 mol)1

Fig. 8 Cross-section of the concentration pro®le of a partially
converted microcrystal in the x-z plane for y � 20 lm and a square
base of 40 lm; Deÿ � 5000 DC�
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reaction geometries, causing tremendous changes in the
chronoamperometric curve. This can also be observed
from the di�erent shapes of the cyclic voltammograms
demonstrated in Fig. 10. The voltammograms are the
result of a simulated cyclic oxidation and reduction of
di�erently shaped cuboids of a uniform volume. De-
pending on the ratio of crystal height, length and
breadth, di�erent di�usion regimes dominate the reac-
tion and determine the time for the total conversion of
the solid. These di�usion regimes are similar to the

process of the conduction of heat in rectangular paral-
lelepipeds [9].

To interpret the chronoamperometric plots it is
helpful to split the I(t) curves into distinct time stages,
which represent the extents of the conversion, and which
are de®ned by di�erent functions. Figure 11 shows the
chronoamperometric plot of the electrolysis of a cuboid
microparticle as the usual current vs. time plot (Fig. 11a)
and as I

��
t
p

vs.
��
t
p

(Fig. 11b). Clearly, di�erent stages (in
the following paragraphs marked with A and B and C)
can be distinguished. The stages have been analyzed and
the current/time equations have been derived from the
curve ®tting results.

Stage A. Stage A (``short time'') denotes the initial pe-
riod of the reaction. During this period, quasi semi-in-
®nite conditions apply to the di�usion of both electrons
and cations. As expected, the resulting current/time
functions are based upon Eq. 8:

I�t� � F
Vm

1

1� exp�ÿu�
� �

u
Dx0

��������
Deÿ
p � Dz0

���������
DC�
p

2
�����
pt
p

� ���
�

����������������
DeÿDC�

p !
ÿ 4DC�

������������
2Deÿ t

p #
�25�

Here, u is the length of the three-phase junction (pe-
rimeter of the electrode|crystal interface). The ``edge

Fig. 9A,B Concentration pro®le inside partially (10%) converted
crystals; cross section through the x-y plane at half height; A crystal of
L � H � 10 lm, B � 40 lm and B L � B � H � 10 lm size

Fig. 10 Cyclic voltammograms of di�erently shaped cuboid particles
of constant volume with a square base of di�erent size;
Deÿ � DC� � 10)8 cm2 s)1, Vm � 153.8 cm3 mol)1, (A) L � B �
28 lm, H � 10 lm, (B) L � B � H � 20 lm, (C) L � B � 16 lm,
H � 31 lm

Fig. 11a,b Chronoamperogram of the electrolysis of a micro-
crystal (20 ´ 20 ´ 20 lm), Deÿ � DC+ � 10)8 cm2 s)1, Vm � 153.8
cm3 mol)1; a I vs. t plot; b I

��
t
p

vs.
��
t
p

plot
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term'' of Eq. 18 had to be multiplied by the number of
edges of the rectangular base to form Eq. 25.

Stage B. Mainly, there are two conditions to be dis-
cussed. Analogously to the two-dimensional model, they
depend on the ratio of the di�usion coe�cients Deÿ and
DC� related to the dimensions. Owing to the fact that the
cations enter the crystal through two interfaces whereas
the electrons enter through one interface only, mC�
(Eq. 19) has to be replaced by the modi®ed quantity m�C� :

m�C� � fshape
4DC�

L2
with 0:5 < fshape < 1 �26�

where fshape represents a dimensionless factor, arising
from the overlapping of the cation di�usion in the
x-direction and the y-direction and thus from the ratio
of the crystal length (L) and crystal width (B). It was
determined from simulation results to reach 1 for L� B
and 0.5 for L � B.
m�C� > meÿ The di�usion of the cations is fast compared
to the di�usion of the electrons. This means that during
the initial period (Fig. 11, stage A) the cations spread
along the electrode|crystal interface into the bulk. Very
quickly, the oxidized centers along this interface are
exhausted, with the consequence that Eq. 25, which is
based upon the unhindered di�usion of both cations and
electrons, loses its validity. Now, the electron di�usion
(in the z-direction) becomes rate determining. This
means that after an initial period in which Eq. 25 is
valid, the orientation of the equiconcentration lines be-
comes more and more parallel to the electrode surface.

The maximum value tref of the I
��
t
p

vs.
��
t
p

plots
(Fig. 11) was found to be a characteristic time to de-
scribe the point at which the transition from the three-
dimensional di�usion conditions (Eq. 25) to the planar
(two-dimensional) di�usion occurs. The value of tref was
found to follow Eq. 27. The accompanying current
value at tref corresponds to Eq. 28.

tref � L2B2

4:45�L2 � B2�DC�
�27�

Iref � 0:75
Fu
Vm

����������������
DeÿDC�

p
1ÿ LB

�L� B� ��������������������������
1:1�L2 � B2�p" #

�28�
It could be feasible to use these values (derived from a
single-crystal potential step experiment) for the determi-
nation of the individual di�usion coe�cients or to de-
termine the geometric parameters of the studied crystals.

Analogously to the two-dimensional model (cf.
Fig. 7), the chronoamperograms approach a depen-
dence, characteristic for planar di�usion conditions, and
which can be described by Eq. 29:

I�t� � 2FADeÿ

VmH
1

1� exp�ÿu�
� �X1

j�1
exp

ÿ�2jÿ 1�2p2Deÿ t
4H2

" #
�29�

The larger is the ratio mC� /meÿ is the more rate deter-
mining the electron di�usion becomes and the faster
both curves merge. For ratios m�C�=meÿ < 10 this happens
only at the very end of the conversion. Nevertheless, this
®nal reaction state (ratio of converted crystal >99%)
can be described by the ®rst term (j � 1) of Eq. 29:

I�t� � 2FADeÿ

VmH
1

1� exp�ÿu�
� �

exp
ÿp2Deÿ t
4H2

� �
�30�

m�C� < meÿ . During the initial reaction period (section A
in Fig. 11) the reaction zone spreads in the z-direction
and reaches the top surface of the crystal. The redox
centers in the vicinity of the crystal|electrolyte interface
are converted quickly. The cation di�usion into the bulk,
in the x and y directions, now becomes rate determining.

The end of section A, tref, was determined to follow
Eq. 31:

tref � H2

1:1 � Deÿ
�31�

At this time, the current was found to be:

Iref � 0:72
Fu
Vm

����������������
DeÿDC�

p
�32�

The crystal will now be converted, advancing from the
crystal|solution interface into the bulk. The most char-
acteristic part is the end of the conversion (see Fig. 11b,
section C). Here, the chronoamperometric curves can be
characterized by Eq. 34 or Eq. 35, depending on the
narrowest breadth B of the cuboid.

For solids with a square base (B � L):

I�t� � 3:3
FHDC�

Vm

1

1� exp�ÿu�
� �

exp
ÿ2p2DC� t

L2

� �
�34�

For B� L:

I�t� � FLHDC�

VmB
1

1� exp�ÿu�
� �

exp
ÿp2DC� t

B2

� �
�35�

At the ®rst glance it seems surprising that Eq. 34 is not
to equal Eq. 35. The result becomes clearer taking Fig. 9
into consideration: in the case of L � B, all the four
crystal|solution interfaces equally contribute to the ex-
haustive conversion. For L > B, the di�usion condi-
tions become similar to a twin-electrode thin ®lm cell.

Conclusions

The electrochemical reduction of a microcrystal attached
to an electrode has been described theoretically by the
help of two- and three-dimensional models. Depending
on the crystal geometry, the simulated voltammetric
behavior for the three-dimensional model di�ers
remarkably from the two-dimensional model.

The geometry of the spatial development of the
reaction zone as a function of the di�usion coe�cients,
of the crystal size and crystal shape determines the
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mathematical functions and therefore the shape of the
chronoamperograms.

An important result of this study is the observation
that in the case of di�erent individual di�usion coe�-
cients of the cations and electrons ± which is a reasonable
assumption for real systems ± the reaction at the three-
phase junction only initially determines the course of the
reaction. During this initial three-phase reaction, the
faster process leads to an exhaustive conversion along the
corresponding interface either the crystal|electrode
interface, or the crystal|solution interface. The further
course of the conversion into the crystal bulk is deter-
mined by the slowest di�usion process. This process
involves only two phases: (1) electrode/crystal in case of
slow electron di�usion, or (2) solution/crystal in case of a
slow cation di�usion. This transition to the two-phase
condition is the reason that a number of equations of the
exhaustive conversion are similar to those known, for
example, for planar di�usion conditions.

The results of this study can, in principle, be utilized
to determine the di�usion coe�cients from experimental
data and also to derive the geometric parameters of the
attached crystals. However, in real experiments with
immobilized microcrystals this will be di�cult, as usu-
ally an assembly of di�erent crystals with a certain shape
and size distribution will be immobilized on the elec-
trode surface. Hence it will be necessary to focus future
work on the behavior of microcrystal arrays with a
known shape and size distribution. Another factor
which has to be taken into account is the slow kinetics of
electron transfer at the electrode|solid interface.

The model of an independent and perpendicular dif-
fusion of cations and electrons ± which was the basis for
the simulation ± is an assumption, which has to be
corroborated by future experimental work. It is essential
to combine theoretical and experimental e�orts to illu-
minate the mechanisms of the insertion solid state
electrochemical reactions.
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